

Neural network and CFD simulation applied for determination of leak location

Sávio Vianna University of Campinas 10th of May 2023 - P2SAC Conference - Purdue University

Contents

- Introduction
- Methodology
- Results
- Closing remarks

Introduction

Given the wind speed, wind direction and localised gas concentration, is it possible to identify the leak location?

Neural network - basics

$$L = \frac{1}{N} \sum_{i=1}^{N} (Y_P - Y_R)^2$$

Methodology

Flowchart for neural network

Methodology

Table: Gas leak locations, wind directions and

	Lea	k Locat	ion				
	x (m)	n) y (m) z (m)		Wind Direction	Wind Velocity (m/s)		
L1	7	-11	1				
L2	2	-3	1	N, S, E, W, NE, SE, SW and NW	2 4 6 and 8		
L3	28	-3	1	IN, S, E, W, INE, SE, SW allu IN W	2, 4, 6 and 8		
L4	20	-11	1				

- •4 Leak Locations x 8 wind directions x 4 wind velocities = 128 simulations for ventilation and dispersion
- •8 wind directions x 4 wind velocities = 32 simulations for ventilation

Figure: (a) Leak locations and (b) Monitoring points (MP) and origin coordinate at module geometry. (c) x-y View

Methodology

- Use of Python programming language and libraries from TensorFlow and Keras
- Regularization tool: early-stopping
- Used during optimisation phase to avoid overfitting
- Hyperparameters

Process Safety and Environmental Protection Volume 159, March 2022, Pages 757-767

Results

UNICAMP

- The dataset included 128 cases for four leakage sources and 32 cases without leakage
- Eight wind directions and four wind velocities
- The data acquisition rate was set at 5 s
- Each dataset was 3 min long

LSTM-RNN	Stacked	Neurons	Timesteps	Training Test		Number of	Encoha	
	LSTM	Neurons	Timesteps	accuracy	accuracy	weights	Epochs	
1	2	75	12	0.994	0.963	74,480	53	
2	3	100	8	0.987	0.960	209,705	69	
3	3	125	12	0.993	0.958	324,630	55	
4	3	100	6	0.985	0.956	209,705	71	
5	3	100	12	0.993	0.956	209,705	47	
6	3	75	10	0.989	0.954	119,780	34	
7	3	150	12	0.992	0.954	$464,\!555$	47	
8	2	150	12	0.986	0.953	283,955	43	
9	3	100	12	0.990	0.953	209,705	33	
10	3	100	12	0.990	0.953	209,705	69	

Table: Results of LSTM-RNN models

Figure: Confusion matrix of LSTM-RNN model 1 for the test data base

Results

Neurons Time-steps		Weight initialization	Training accuracy	Test	Number of weights	
20	11	Random normal	0.985	0.962	2565	
30	12	Random normal	0.989	0.959	4745	
40	10	Random normal	0.983	0.947	7525	
20	12	Random normal	0.986	0.943	2565	
45	12	Random normal	0.984	0.943	9140	
10	10	Random uniform	0.980	0.943	985	
40	9	Random uniform	0.984	0.942	7525	
30	12	Random uniform	0.986	0.941	4745	
30	12	Identity	0.974	0.941	4745	
50	7	Identity	0.972	0.939	10905	

Table: Results of GRU models

Figure: Confusion matrix of the best GRU model for the test data base.

Case study

Case study

A1	0.85	0.00	0.00	0.00	0.15	0.00	0.00	0.00	0.00		.0
A2	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0).8
A3	0.00	0.00	0.99	0.00	0.00	0.00	0.00	0.00	0.00		
	0.00	0.00	0.00	0.94	0.00	0.00	0.00	0.06	0.00	-0).6
Actual source B1	0.08	0.00	0.00	0.00	0.91	0.00	0.00	0.00	0.02		
	0.00	0.12	0.00	0.00	0.00	0.81	0.07	0.00	0.00	- 0).4
B3	0.00	0.00	0.00	0.00	0.00	0.01	0.99	0.00	0.00		
B4	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.96	0.00	- C).2
Ŋ.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00		
	Å1	Å2	Å3	A4 Pred	B1 dicted so	B2 urce	ВЗ	B4	NL	-0	0.0

Closing remarks

0.8

0.6

0.4

0.2

0.0

0.3

0.2

0.1

Physics informed neural network

$$L = \frac{1}{N} \sum_{i=1}^{N} \left[f(x, y) - f_P(x, y) \right]^2$$

Acknowledgments

